Enhancing the performance of image classification through features automatically learned from depth-maps

George Ciubotariu, Vlad-Ioan Tomescu, Gabriela Czibula

September 2021

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Contents

Original Contribution

Introduction

Computer Vision and Deep Learning

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Data Set

Unsupervised Analysis

Supervised Analysis

Future Enhancements

Research Questions and Original Contributions

- RQ1: How relevant are depth maps in the context of indoor-outdoor image classification?
 - Unsupervised learning based analysis on DIODE dataset for indoor-outdoor classification
 - t-SNE clustering support for further supervised investigations
- RQ2: To what extent does aggregating visual features into more granular sub-images increase the performance of classifiers?
 - Supervised learning based classification for supporting the unsupervised approach
 - Multilayer Perceptron (MLP) classifier tested to confirm hypothesis
- RQ3: How correlated are the results of the unsupervised based analysis and the performance of supervised models applied for indoor-outdoor image classification?
 - Comparative analysis on image features aggregation

Introduction in the Approached Tasks

- Indoor-Outdoor Classification
 motivation
- Semantic Segmentation
- Depth Estimation

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Related Work

- A review on indoor-outdoor scene classification, feature extraction methods, classifiers and data sets is done by Tong et al. [TSYW06]
 - multiple remarkable methods
 - mentions good performances between 1998 and 2017
 - features such as color, texture, edge etc.
 - multiple data sets were mentioned
- Cvetkovic et al. [CNI14]
 - color and texture descriptors and a SVM classifier
 - results of 93.71% and 92.36% accuracy on two public data sets
- Tahir et al. [TMR15]
 - computes the GIST descriptor as a feature vector
 - 90.8% accuracy on a public data set
- Raja et al. [RRDR13]
 - uses HSV instead of RGB color encoding
 - extracts color, texture and entropy features
 - features extracted from 100 sub-images
 - lightweight KNN classifier

Computer Vision (CV) and Deep Learning (DL)

Most recent work implement **Convolutional Neural Networks** (CNNs) in dense visual tasks such as *Semantic Segmentation* (SS) or *Depth Estimation* (DE).

► [LRSK19, RBK21] Dense Prediction Transformers (DPT)

- model that leverages visual transformers instead of convolutions.
- robust architecture to serve as a backbone in our experiments

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

tested for both SS and DE tasks, achieving great results, therefore offering us the possibility to create a comparative approach

Vision Transformers for Dense Prediction (DPT)

Model	Image resolution	# extracted features after encoder	# extracted features after decoder
Depth Estimation Semantic Segmentation	384×384	49152	12582912

Table: DPT architectures details

Figure: DPT architecture

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

DIODE (Dense Indoor and Outdoor DEpth)

- Data has been collected with a FARO Focus S350
- It consists of 27858 1024×768 RGB-D images
- Photos have been taken both at daytime and night, over several seasons (summer, fall, winter)

Apart from RGB-D images, DIODE dataset also provides us with normal maps that could further enhance the learning of depth and vice-versa

DIODE (Dense Indoor and Outdoor DEpth)

Figure: Sample images from DIODE dataset

イロト イボト イヨト イヨト 三日

DIODE Structure

Figure: Histogram of depth values Figure: Histogram of depth values frequency (%) for indoor train set frequency (%) for outdoor train set

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

Methodology

Feature extraction

- manually engineered features
- automatically learned features
- Unsupervised learning-based analysis
- Supervised learning-based analysis
 - depth-augmented images

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Automatic Feature Extraction

1. aggregating RGB from sub-images

- $3 \cdot k$ dimensional vector (k = 1, 4, 16)
- average RGB values for each sub-image

2. aggregating RGBD from sub-images

•
$$4 \cdot k$$
 dimensional vector ($k = 1, 4, 16$)

 average RGBD values for each sub-image

3. features from DPT encoder/decoder

- trained for SS
- trained for DE

Figure: Structure of image splits

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Unsupervised Learning for Analysing the Data

- 3D t-SNE unsupervised clustering
 - used for non-linear dimensionality reduction
 - able to uncover more useful patterns in data
 - uses Student t-distribution to better disperse the clusters
- data normalization with the inverse hyperbolic sine (asinh)
 - increased sensitivity to particularly small and large values
- parameters used
 - perplexity of 20
 - learning rate of 3.0
 - for a slower converging but finer learning curve
 - 1000 iterations

Measure	RGBD features	DPT DE	DPT SS	DPT SS depth	
	(4 splits)	learned features	learned features	augmented features	
Prec	0.769	0.729	0.945	0.957	

Table: Prec values for the t-SNE transformations depicted in Figures 6 - 9.

Features extracted aggregating RGB and RGBD values

4 splits

Figure: t-SNE for RGB with 4 splits Figure: t-SNE for RGB-D with 4 splits

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Features Extracted from DL models

DPT trained for Semantic Segmentation

Figure: t-SNE of DPT encoder extracted features for SS

Figure: t-SNE of DTP encoder extracted features for DE

Supervised Learning Results

Features	# Splits (n)	Accuracy	AUC	Specificity	Sensitivity
RGB	0	0.692±0.077	$0.525{\pm}0.056$	0.980±0.028	$0.070 {\pm} 0.121$
	1	0.688±0.064	0.517±0.022	0.989 ±0.014	0.046±0.049
	2	0.669±0.049	$0.545{\pm}0.048$	0.912±0.068	$0.163{\pm}0.136$
RGBD	0	0.880 ±0.039	$0.858{\pm}0.041$	0.898±0.058	$0.817{\pm}0.081$
	1	0.876±0.043	0.862 ±0.044	0.894±0.046	0.829±0.063
	2	0.838±0.044	$0.826 {\pm} 0.053$	0.848±0.060	$0.804{\pm}0.099$
DPT-DE	0	0.823±0.131	$0.831{\pm}0.076$	$0.812{\pm}0.185$	$0.850{\pm}0.069$
DPT-SS	0	0.950±0.027	0.942±0.029	0.969±0.034	0.915±0.053
DPT-SS+D	0	0.961 ±0.015	0.956±0.021	0.970±0.019	0.941 ±0.041

Table: The results of supervised learning indoor-outdoor classification on DIODE dataset. Confidence intervals of 95% were used in the analysis. Only the features extracted by the DPT encoder are used in the experiments.

Comparative Results

Benefits of our method:

- lightweight
 - uses less features and parameters compared to other models
 - Iow memory and computational cost compared to other deep learning methods

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- significant increase in performance when adding depth cues
- capable of being optimised using multi-threading
- displays potential of depth cues use for multiple visual tasks

According to the study performed by Tong et al., our approach which uses features extracted using DPT-SS+D (96.1% accuracy) establishes a new State-of-the-art in indoor-outdoor classification. The best performance presented in [TSYW06] is 93.8% accuracy.

Ongoing Experiments and Future Enhancements

- Identifying features that can be used in both SS and DE
- Identifying other problems that can be solved with adapted DL models

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Architecture Transfer from SS towards DE
- Multitask and Collaborative Learning

Thank you!

Questions?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Bibliography I

 Stevica Cvetkovic, Sasa Nikolic, and Slobodan Ilic.
 Effective combining of color and texture descriptors for indoor-outdoor image classification.
 Facta universitatis - series: Electronics and Energetics, 27:399–410, 01 2014.

Katrin Lasinger, René Ranftl, Konrad Schindler, and Vladlen Koltun.

Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

CoRR, abs/1907.01341, 2019.

René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vision transformers for dense prediction. *CoRR*, abs/2103.13413, 2021.

Bibliography II

 R. Raja, S. Md. Mansoor Roomi, D. Dharmalakshmi, and S. Rohini.
 Classification of indoor/outdoor scene.
 In 2013 IEEE International Conference on Computational Intelligence and Computing Research, pages 1–4, 2013.

Waleed Tahir, Aamir Majeed, and T. Rehman. Indoor/outdoor image classification using gist image features and neural network classifiers.

12th International Conference on High-capacity Optical Networks and Emerging Technologies, pages 1–5, 2015.

Zhehang Tong, Dianxi Shi, Bingzheng Yan, and Jing Wei. A review of indoor-outdoor scene classification.

In Proceedings of the 2017 2nd International Conference on Control, Automation and Artificial Intelligence (CAAI 2017), pages 469–474. Atlantis Press, 2017/06.